CData Python Connector for IBM Cloud Data Engine

Build 23.0.8839

From Petl

The connector can be used to create ETL applications and pipelines for CSV data in Python using Petl.

Install Required Modules

Install the Petl modules using the pip utility.
pip install petl


After you import the modules, including the CData Python Connector for IBM Cloud Data Engine, you can use the connector's connect function to create a connection using a valid IBM Cloud Data Engine connection string. If you prefer not to use a direct connection, you can use a SQLAlchemy engine.
import petl as etl
import cdata.ibmcloudsqlquery as mod
cnxn = mod.connect("Api Key=MyAPIKey;")

Extract, Transform, and Load the IBM Cloud Data Engine Data

Create a SQL query string and store the query results in a DataFrame.
sql = "SELECT	Id, Status FROM [CloudObjectStorage_1].[SampleBucket_1].Jobs "
table1 = etl.fromdb(cnxn,sql)

Loading Data

With the query results stored in a DataFrame, you can load your data into any supported Petl destination. The following example loads the data into a CSV file.

Modifying Data

Insert new rows into IBM Cloud Data Engine tables using Petl's appenddb function.
table1 = [['Id','Status'],['Jon Doe','John']]

Copyright (c) 2024 CData Software, Inc. - All rights reserved.
Build 23.0.8839