The CData Sync App provides a straightforward way to continuously pipeline your SQL Server data to any database, data lake, or data warehouse, making it easily available for Analytics, Reporting, AI, and Machine Learning.
The SQL Server connector can be used from the CData Sync application to pull data from SQL Server and move it to any of the supported destinations.
Create a connection to SQL Server by navigating to the Connections page in the Sync App application and selecting the corresponding icon in the Add Connections panel. If the SQL Server icon is not available, click the Add More icon to download and install the SQL Server connector from the CData site.
Required properties are listed under the Settings tab. The Advanced tab lists connection properties that are not typically required.
You can use the SQL Server Connector for CData Sync to connect to any instance of Microsoft SQL Server, Azure SQL Server, or Azure Data Warehouse.
Specify the following connection properties to connect to SQL Server:
To authenticate to Microsoft SQL Server using your SQL Server user login credentials, set the following:
To enable the Sync App to obtain login credentials automatically from the identity of the windows user running the process, set the following:
Please see Using Kerberos for details on how to authenticate with Kerberos.
You can connect to Azure SQL Server or Azure Data Warehouse by setting the following connection properties:
Standard credentials may be used to authenticate to Azure hosted SQL Server. To do so, set the following:
Alternatively, a form of OAuth may be used by setting AuthScheme to one of AzureAd, AzurePassword, or AzureMSI. All OAuth connections require setting Tenant:
Azure AD is a connection type that leverages OAuth to authenticate. OAuth requires the authenticating user to interact with SQL Server using an internet browser. The Sync App facilitates this in several ways as described below. Set your AuthScheme to AzureAD. All AzureAD flows assume that you have done so.
For authentication, the only difference between the two methods is that you must set two additional connection properties when using custom OAuth applications.
After setting the following connection properties, you are ready to connect:
When you connect the Sync App opens the OAuth endpoint in your default browser. Log in and grant permissions to the application.
When connecting via a Web application, you need to register a custom OAuth app with SQL Server. See Creating a Custom AzureAD App. You can then use the Sync App to get and manage the OAuth token values. Get an OAuth Access Token
Set one of the following connection properties groups depending on the authentication type to obtain the OAuthAccessToken:
You can then call stored procedures to complete the OAuth exchange:
Call the GetOAuthAuthorizationUrl stored procedure. Set the AuthMode input to WEB and set the CallbackURL input to the Redirect URI you specified in your app settings. If necessary, set the Permissions parameter to request custom permissions.
The stored procedure returns the URL to the OAuth endpoint.
To connect to data, set the OAuthAccessToken connection property to the access token returned by the stored procedure. When the access token expires after ExpiresIn seconds, call GetOAuthAccessToken again to obtain a new access token.
Client OAuth Flow
All permissions related to the client oauth flow require admin consent. This means the app embedded with the CData Sync App cannot be used in the client oauth flow. You must create your own OAuth app in order to use client credentials. See Creating a Custom AzureAD App for more details.
In your App Registration in portal.azure.com, navigate to API Permissions and select the Microsoft Graph permissions. There are two distinct sets of permissions - Delegated and Application permissions. The permissions used during client credential authentication are under Application Permissions. Select the permissions you require for your integration.
You are ready to connect after setting one of the connection properties groups depending on the authentication type.
Authentication with client credentials takes place automatically like any other connection, except there is no window opened prompting the user. Because there is no user context, there is no need for a browser popup. Connections will take place and be handled internally.
Azure Service Principal is a connection type that goes through OAuth. Set your AuthScheme to AzureServicePrincipal. The authentication as an Azure Service Principal is handled via the OAuth Client Credentials flow, and it does not involve direct user authentication. Instead, credentials are created for just the app itself. All tasks taken by the app are done without a default user context, but based on the assigned roles. The application access to the resources is controlled through the assigned roles' permissions.
Note: You must create a custom application prior to assigning a role. See Creating a Custom AzureAD App for more information.
When authenticating using an Azure Service Principal, you must register an application with an Azure AD tenant. Follow the steps below to create a new service principal that can be used with the role-based access control.
In both methods
Before choosing client secret or certicate authentication, follow these steps then continue to the relevant section below:
Continue with the following:
Authenticating using a Certificate
Continue with the following:
To connect using your Azure credentials directly, specify the following connection properties:
If you are running SQL Server on an Azure VM, you can leverage Managed Service Identity (MSI) credentials to connect:
The MSI credentials are automatically obtained for authentication.
This section shows how to use the Sync App to authenticate using Kerberos.
To authenticate to SQL Server using Kerberos, set the following properties:
You can use one of the following options to retrieve the required Kerberos ticket.
This option enables you to use the MIT Kerberos Ticket Manager or kinit command to get tickets. Note that you do not need to set the User or Password connection properties with this option.
As an alternative to setting the KRB5CCNAME environment variable, you can directly set the file path using the KerberosTicketCache property. When set, the Sync App uses the specified cache file to obtain the Kerberos ticket to connect to SQL Server.
If the KRB5CCNAME environment variable has not been set, you can retrieve a Kerberos ticket using a Keytab File. To do so, set the User property to the desired username and set the KerberosKeytabFile property to a file path pointing to the keytab file associated with the user.
If both the KRB5CCNAME environment variable and the KerberosKeytabFile property have not been set, you can retrieve a ticket using a user and password combination. To do this, set the User and Password properties to the user/password combination that you use to authenticate with SQL Server.
More complex Kerberos environments may require cross-realm authentication where multiple realms and KDC servers are used (e.g., where one realm/KDC is used for user authentication and another realm/KDC is used for obtaining the service ticket).
In such an environment, set the KerberosRealm and KerberosKDC properties to the values required for user authentication. Also set the KerberosServiceRealm and KerberosServiceKDC properties to the values required to obtain the service ticket.
SQL Server offers 2 different methods for tracking the changes from your source database:
Change Tracking is a lightweight solution that provides an efficient tracking mechanism for CData Sync. Once configured on your tables, any DML statement that affects rows in the source table will cause change tracking information for each modified row to be recorded to the change tracking table. To identify the rows that have changed, SQL Server tracks the primary key of the table, the operation the caused the change (Insert, Update, Delete) and the current rowversion. This means only tables that have a primary key can use Change Tracking. Sync then joins the change tracking table to the source table to get the changes.
Change Data Capture on the other hand tracks every change that is applied to a table and records those changes in a shadow history table. Instead of only capturing the primary key like Change Tracking, CDC will record the full row data to the history table allowing CDC to work with tables that do not include the primary key. To get the changes, Sync selects from the history view instead of the source table. As a result, CDC has less impact on the performance of source tables since Sync does not interact directly with the source table when doing incremental replication.
ALTER DATABASE [<database>] SET CHANGE_TRACKING = ON (CHANGE_RETENTION = 7 DAYS, AUTO_CLEANUP = ON);
CHANGE_RETENTION specifies the time period for which change tracking information is kept in your database. It is best to set a larger window to give Sync time to resolve conflicts and errors. If the last successful Job run is outside the retention period (i.e. CHANGE_RETENTION is set to 7 Days but the last successful sync was 8 days previous), Sync will automatically replicate the full table to ensure no changes were missed. ALTER TABLE [<schema>].[<table>] ENABLE CHANGE_TRACKING;
Note: To use Change Tracking, each table must have at least 1 primary key.In CData Sync, create a Job with you SQL Server source and select the Use SQL Change Tracking option.
USE [<database>];
EXEC sys.sp_cdc_enable_db;
GO
USE [<database>];
EXEC sys.sp_cdc_enable_table
@source_schema = [<schema>],
@source_name = [<table>],
@role_name = NULL
GO
In CData Sync, create a Job with you SQL Server source and select the Use SQL Change Data Capture option.
When using Change Tracking, Sync will automatically update the destination table when changes are made to the source table structure like adding a column or changing a datatype. When using Change Data Capture, SQL Server will not automatically track new columns so you must create a new CDC instance and drop the old instance. This will trigger a full refresh of the table in Sync.
Both tracking mechanisms allow Sync to capture deleted records. When using Change Data Capture, Sync only supports the SoftDelete option while Change Tracking supports both Soft and Hard Delete. More information can be found here: CData Sync - Capturing Deletes
This section details a selection of advanced features of the SQL Server Sync App.
Use SSL Configuration to adjust how Sync App handles TLS/SSL certificate negotiations. You can choose from various certificate formats; see the SSLServerCert property under "Connection String Options" for more information.
Configure the Sync App for compliance with Firewall and Proxy, including Windows proxies and HTTP proxies. You can also set up tunnel connections.
See Logging for an overview of configuration settings that can be used to refine CData logging. For basic logging, you only need to set two connection properties, but there are numerous features that support more refined logging, where you can select subsets of information to be logged using the LogModules connection property.
By default, the Sync App attempts to negotiate SSL/TLS by checking the server's certificate against the system's trusted certificate store.
To specify another certificate, see the SSLServerCert property for the available formats to do so.
The SQL Server Sync App also supports setting client certificates. Set the following to connect using a client certificate.
To connect through the Windows system proxy, you do not need to set any additional connection properties. To connect to other proxies, set ProxyAutoDetect to false.
In addition, to authenticate to an HTTP proxy, set ProxyAuthScheme, ProxyUser, and ProxyPassword, in addition to ProxyServer and ProxyPort.
Set the following properties:
In addition to modeling data directly from SQL Server, the CData Sync App also includes a few built in stored procedures designed for assisting with OAuth connections against Azure hosted SQL Server. The stored procedures are listed here.
The Sync App maps types from the data source to the corresponding data type available in the schema. The table below documents these mappings.
SQL Server | CData Schema |
bigint | long |
bigint identity | long |
binary | binary |
bit | bool |
char | string |
date | date |
datetime | datetime |
datetimeoffset | datetime |
datetime2 | datetime |
decimal | decimal |
decimal identity | decimal |
float | float |
geography | binary |
geometry | binary |
hierarchyid | binary |
image | binary |
int | int |
int identity | int |
money | decimal |
nchar | string |
ntext | string |
nvarchar | string |
numeric | decimal |
numeric identity | decimal |
real | float |
rowversion | binary |
smalldatetime | datetime |
smallint | short |
smallint identity | short |
smallmoney | decimal |
sql_variant | binary |
table | string |
text | string |
time | time |
timestamp | binary |
tinyint | byte |
tinyint identity | byte |
uniqueidentifier | string |
varbinary | binary |
varchar | string |
xml | string |
The connection string properties are the various options that can be used to establish a connection. This section provides a complete list of the options you can configure in the connection string for this provider. Click the links for further details.
For more information on establishing a connection, see Establishing a Connection.
Property | Description |
AuthScheme | The scheme used for authentication. Accepted entries are Password, NTLM, Kerberos, AzurePassword, AzureAD, AzureMSI, AzureServicePrincipal. |
Server | The name of the server running SQL Server. |
Port | The port of the MS SQL Server. |
Database | The name of the SQL Server database. |
User | The SQL Server user account used to authenticate. |
Password | The password used to authenticate the user. |
Domain | The name of the domain for a Windows (NTLM) security login. |
IntegratedSecurity | Whether or not to authenticate with Windows Integrated Security. |
NTLMVersion | The NTLM version. |
Encrypt | This field sets whether SSL is enabled. |
Property | Description |
AzureTenant | The Microsoft Online tenant being used to access data. If not specified, your default tentant will be used. |
Property | Description |
OAuthClientId | The client Id assigned when you register your application with an OAuth authorization server. |
OAuthClientSecret | The client secret assigned when you register your application with an OAuth authorization server. |
OAuthGrantType | The grant type for the OAuth flow. |
Property | Description |
KerberosKDC | The Kerberos Key Distribution Center (KDC) service used to authenticate the user. |
KerberosRealm | The Kerberos Realm used to authenticate the user. |
KerberosSPN | The service principal name (SPN) for the Kerberos Domain Controller. |
KerberosKeytabFile | The Keytab file containing your pairs of Kerberos principals and encrypted keys. |
KerberosServiceRealm | The Kerberos realm of the service. |
KerberosServiceKDC | The Kerberos KDC of the service. |
KerberosTicketCache | The full file path to an MIT Kerberos credential cache file. |
Property | Description |
SSLClientCert | The TLS/SSL client certificate store for SSL Client Authentication (2-way SSL). |
SSLClientCertType | The type of key store containing the TLS/SSL client certificate. |
SSLClientCertPassword | The password for the TLS/SSL client certificate. |
SSLClientCertSubject | The subject of the TLS/SSL client certificate. |
SSLServerCert | The certificate to be accepted from the server when connecting using TLS/SSL. |
Property | Description |
SSHAuthMode | The authentication method to be used to log on to an SFTP server. |
SSHClientCert | A private key to be used for authenticating the user. |
SSHClientCertPassword | The password of the SSHClientCert key if it has one. |
SSHClientCertSubject | The subject of the SSH client certificate. |
SSHClientCertType | The type of SSHClientCert private key. |
SSHServer | The SSH server. |
SSHPort | The SSH port. |
SSHUser | The SSH user. |
SSHPassword | The SSH password. |
SSHServerFingerprint | The SSH server fingerprint. |
UseSSH | Whether to tunnel the SQL Server connection over SSH. Use SSH. |
Property | Description |
FirewallType | The protocol used by a proxy-based firewall. |
FirewallServer | The name or IP address of a proxy-based firewall. |
FirewallPort | The TCP port for a proxy-based firewall. |
FirewallUser | The user name to use to authenticate with a proxy-based firewall. |
FirewallPassword | A password used to authenticate to a proxy-based firewall. |
Property | Description |
ProxyAutoDetect | This indicates whether to use the system proxy settings or not. This takes precedence over other proxy settings, so you'll need to set ProxyAutoDetect to FALSE in order use custom proxy settings. |
ProxyServer | The hostname or IP address of a proxy to route HTTP traffic through. |
ProxyPort | The TCP port the ProxyServer proxy is running on. |
ProxyAuthScheme | The authentication type to use to authenticate to the ProxyServer proxy. |
ProxyUser | A user name to be used to authenticate to the ProxyServer proxy. |
ProxyPassword | A password to be used to authenticate to the ProxyServer proxy. |
ProxySSLType | The SSL type to use when connecting to the ProxyServer proxy. |
ProxyExceptions | A semicolon separated list of destination hostnames or IPs that are exempt from connecting through the ProxyServer . |
Property | Description |
LogModules | Core modules to be included in the log file. |
Property | Description |
Location | A path to the directory that contains the schema files defining tables, views, and stored procedures. |
BrowsableSchemas | This property restricts the schemas reported to a subset of the available schemas. For example, BrowsableSchemas=SchemaA,SchemaB,SchemaC. |
Tables | This property restricts the tables reported to a subset of the available tables. For example, Tables=TableA,TableB,TableC. |
Views | Restricts the views reported to a subset of the available tables. For example, Views=ViewA,ViewB,ViewC. |
Property | Description |
ApplicationIntent | The application intent connection string property expresses the client application's request to be directed either to a read-write or read-only version of an availability group database. To use read-only routing, a client must use an application intent of read-only in the connection string when connecting to the availability group listener. Without the read-only application intent, connections to the availability group listener are directed to the database on the primary replica. |
ApplicationName | The application name connection string property expresses the HTTP User-Agent. |
IncludeTableTypes | If set to true, the provider will query for the types of individual tables and views. |
MaxRows | Limits the number of rows returned rows when no aggregation or group by is used in the query. This helps avoid performance issues at design time. |
Other | These hidden properties are used only in specific use cases. |
QueryPassthrough | This option passes the query to the SQL Server server as is. |
Timeout | A timeout for the provider. |
This section provides a complete list of the Authentication properties you can configure in the connection string for this provider.
Property | Description |
AuthScheme | The scheme used for authentication. Accepted entries are Password, NTLM, Kerberos, AzurePassword, AzureAD, AzureMSI, AzureServicePrincipal. |
Server | The name of the server running SQL Server. |
Port | The port of the MS SQL Server. |
Database | The name of the SQL Server database. |
User | The SQL Server user account used to authenticate. |
Password | The password used to authenticate the user. |
Domain | The name of the domain for a Windows (NTLM) security login. |
IntegratedSecurity | Whether or not to authenticate with Windows Integrated Security. |
NTLMVersion | The NTLM version. |
Encrypt | This field sets whether SSL is enabled. |
The scheme used for authentication. Accepted entries are Password, NTLM, Kerberos, AzurePassword, AzureAD, AzureMSI, AzureServicePrincipal.
Together with Password and User, this field is used to authenticate against the server. Password is the default option. Use the following options to select your authentication scheme:
The name of the server running SQL Server.
Set this property to the name or network address of the SQL Server instance.
The name of the SQL Server database.
The name of the SQL Server database running on the specified Server.
The SQL Server user account used to authenticate.
Together with Password, this field is used to authenticate against the SQL Server server.
The password used to authenticate the user.
The User and Password are together used to authenticate with the server.
The name of the domain for a Windows (NTLM) security login.
The name of the domain for a Windows (NTLM) security login.
Whether or not to authenticate with Windows Integrated Security.
When this is set to true, a Windows identity will be used to perform Windows authentication. If this value is false, SQL Server authentication will be used.
The NTLM version.
This property specifies the NTLM version to use.
This field sets whether SSL is enabled.
This field sets whether the Sync App will attempt to negotiate TLS/SSL connections to the server. By default, the Sync App checks the server's certificate against the system's trusted certificate store. To specify another certificate, set SSLServerCert.
This section provides a complete list of the Azure Authentication properties you can configure in the connection string for this provider.
Property | Description |
AzureTenant | The Microsoft Online tenant being used to access data. If not specified, your default tentant will be used. |
The Microsoft Online tenant being used to access data. If not specified, your default tentant will be used.
The Microsoft Online tenant being used to access data. For instance, contoso.onmicrosoft.com. Alternatively, specify the tenant Id. This value is the directory Id in the Azure Portal > Azure Active Directory > Properties.
Typically it is not necessary to specify the Tenant. This can be automatically determined by Microsoft when using the OAuthGrantType set to CODE (default). However, it may fail in the case that the user belongs to multiple tenants. For instance, if an Admin of domain A invites a user of domain B to be a guest user. The user will now belong to both tenants. It is a good practice to specify the Tenant, although in general things should normally work without having to specify it.
The AzureTenant is required when setting OAuthGrantType to CLIENT. When using client credentials, there is no user context. The credentials are taken from the context of the app itself. While Microsoft still allows client credentials to be obtained without specifying which Tenant, it has a much lower probability of picking the specific tenant you want to work with. For this reason, we require AzureTenant to be explicitly stated for all client credentials connections to ensure you get credentials that are applicable for the domain you intend to connect to.
This section provides a complete list of the OAuth properties you can configure in the connection string for this provider.
Property | Description |
OAuthClientId | The client Id assigned when you register your application with an OAuth authorization server. |
OAuthClientSecret | The client secret assigned when you register your application with an OAuth authorization server. |
OAuthGrantType | The grant type for the OAuth flow. |
The client Id assigned when you register your application with an OAuth authorization server.
As part of registering an OAuth application, you will receive the OAuthClientId value, sometimes also called a consumer key, and a client secret, the OAuthClientSecret.
The client secret assigned when you register your application with an OAuth authorization server.
As part of registering an OAuth application, you will receive the OAuthClientId, also called a consumer key. You will also receive a client secret, also called a consumer secret. Set the client secret in the OAuthClientSecret property.
The grant type for the OAuth flow.
The following options are available: CODE,CLIENT
This section provides a complete list of the Kerberos properties you can configure in the connection string for this provider.
Property | Description |
KerberosKDC | The Kerberos Key Distribution Center (KDC) service used to authenticate the user. |
KerberosRealm | The Kerberos Realm used to authenticate the user. |
KerberosSPN | The service principal name (SPN) for the Kerberos Domain Controller. |
KerberosKeytabFile | The Keytab file containing your pairs of Kerberos principals and encrypted keys. |
KerberosServiceRealm | The Kerberos realm of the service. |
KerberosServiceKDC | The Kerberos KDC of the service. |
KerberosTicketCache | The full file path to an MIT Kerberos credential cache file. |
The Kerberos Key Distribution Center (KDC) service used to authenticate the user.
The Kerberos properties are used when using SPNEGO or Windows Authentication. The Sync App will request session tickets and temporary session keys from the Kerberos KDC service. The Kerberos KDC service is conventionally colocated with the domain controller.
If Kerberos KDC is not specified, the Sync App will attempt to detect these properties automatically from the following locations:
The Kerberos Realm used to authenticate the user.
The Kerberos properties are used when using SPNEGO or Windows Authentication. The Kerberos Realm is used to authenticate the user with the Kerberos Key Distribution Service (KDC). The Kerberos Realm can be configured by an administrator to be any string, but conventionally it is based on the domain name.
If Kerberos Realm is not specified, the Sync App will attempt to detect these properties automatically from the following locations:
The service principal name (SPN) for the Kerberos Domain Controller.
If the SPN on the Kerberos Domain Controller is not the same as the URL that you are authenticating to, use this property to set the SPN.
The Keytab file containing your pairs of Kerberos principals and encrypted keys.
The Keytab file containing your pairs of Kerberos principals and encrypted keys.
The Kerberos realm of the service.
The KerberosServiceRealm is the specify the service Kerberos realm when using cross-realm Kerberos authentication.
In most cases, a single realm and KDC machine are used to perform the Kerberos authentication and this property is not required.
This property is available for complex setups where a different realm and KDC machine are used to obtain an authentication ticket (AS request) and a service ticket (TGS request).
The Kerberos KDC of the service.
The KerberosServiceKDC is used to specify the service Kerberos KDC when using cross-realm Kerberos authentication.
In most cases, a single realm and KDC machine are used to perform the Kerberos authentication and this property is not required.
This property is available for complex setups where a different realm and KDC machine are used to obtain an authentication ticket (AS request) and a service ticket (TGS request).
The full file path to an MIT Kerberos credential cache file.
This property can be set if you wish to use a credential cache file that was created using the MIT Kerberos Ticket Manager or kinit command.
This section provides a complete list of the SSL properties you can configure in the connection string for this provider.
Property | Description |
SSLClientCert | The TLS/SSL client certificate store for SSL Client Authentication (2-way SSL). |
SSLClientCertType | The type of key store containing the TLS/SSL client certificate. |
SSLClientCertPassword | The password for the TLS/SSL client certificate. |
SSLClientCertSubject | The subject of the TLS/SSL client certificate. |
SSLServerCert | The certificate to be accepted from the server when connecting using TLS/SSL. |
The TLS/SSL client certificate store for SSL Client Authentication (2-way SSL).
The name of the certificate store for the client certificate.
The SSLClientCertType field specifies the type of the certificate store specified by SSLClientCert. If the store is password protected, specify the password in SSLClientCertPassword.
SSLClientCert is used in conjunction with the SSLClientCertSubject field in order to specify client certificates. If SSLClientCert has a value, and SSLClientCertSubject is set, a search for a certificate is initiated. See SSLClientCertSubject for more information.
Designations of certificate stores are platform-dependent.
The following are designations of the most common User and Machine certificate stores in Windows:
MY | A certificate store holding personal certificates with their associated private keys. |
CA | Certifying authority certificates. |
ROOT | Root certificates. |
SPC | Software publisher certificates. |
In Java, the certificate store normally is a file containing certificates and optional private keys.
When the certificate store type is PFXFile, this property must be set to the name of the file. When the type is PFXBlob, the property must be set to the binary contents of a PFX file (for example, PKCS12 certificate store).
The type of key store containing the TLS/SSL client certificate.
This property can take one of the following values:
USER - default | For Windows, this specifies that the certificate store is a certificate store owned by the current user. Note that this store type is not available in Java. |
MACHINE | For Windows, this specifies that the certificate store is a machine store. Note that this store type is not available in Java. |
PFXFILE | The certificate store is the name of a PFX (PKCS12) file containing certificates. |
PFXBLOB | The certificate store is a string (base-64-encoded) representing a certificate store in PFX (PKCS12) format. |
JKSFILE | The certificate store is the name of a Java key store (JKS) file containing certificates. Note that this store type is only available in Java. |
JKSBLOB | The certificate store is a string (base-64-encoded) representing a certificate store in JKS format. Note that this store type is only available in Java. |
PEMKEY_FILE | The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate. |
PEMKEY_BLOB | The certificate store is a string (base64-encoded) that contains a private key and an optional certificate. |
PUBLIC_KEY_FILE | The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate. |
PUBLIC_KEY_BLOB | The certificate store is a string (base-64-encoded) that contains a PEM- or DER-encoded public key certificate. |
SSHPUBLIC_KEY_FILE | The certificate store is the name of a file that contains an SSH-style public key. |
SSHPUBLIC_KEY_BLOB | The certificate store is a string (base-64-encoded) that contains an SSH-style public key. |
P7BFILE | The certificate store is the name of a PKCS7 file containing certificates. |
PPKFILE | The certificate store is the name of a file that contains a PuTTY Private Key (PPK). |
XMLFILE | The certificate store is the name of a file that contains a certificate in XML format. |
XMLBLOB | The certificate store is a string that contains a certificate in XML format. |
The password for the TLS/SSL client certificate.
If the certificate store is of a type that requires a password, this property is used to specify that password to open the certificate store.
The subject of the TLS/SSL client certificate.
When loading a certificate the subject is used to locate the certificate in the store.
If an exact match is not found, the store is searched for subjects containing the value of the property. If a match is still not found, the property is set to an empty string, and no certificate is selected.
The special value "*" picks the first certificate in the certificate store.
The certificate subject is a comma separated list of distinguished name fields and values. For example, "CN=www.server.com, OU=test, C=US, [email protected]". The common fields and their meanings are shown below.
Field | Meaning |
CN | Common Name. This is commonly a host name like www.server.com. |
O | Organization |
OU | Organizational Unit |
L | Locality |
S | State |
C | Country |
E | Email Address |
If a field value contains a comma, it must be quoted.
The certificate to be accepted from the server when connecting using TLS/SSL.
If using a TLS/SSL connection, this property can be used to specify the TLS/SSL certificate to be accepted from the server. Any other certificate that is not trusted by the machine is rejected.
This property can take the following forms:
Description | Example |
A full PEM Certificate (example shortened for brevity) | -----BEGIN CERTIFICATE----- MIIChTCCAe4CAQAwDQYJKoZIhv......Qw== -----END CERTIFICATE----- |
A path to a local file containing the certificate | C:\cert.cer |
The public key (example shortened for brevity) | -----BEGIN RSA PUBLIC KEY----- MIGfMA0GCSq......AQAB -----END RSA PUBLIC KEY----- |
The MD5 Thumbprint (hex values can also be either space or colon separated) | ecadbdda5a1529c58a1e9e09828d70e4 |
The SHA1 Thumbprint (hex values can also be either space or colon separated) | 34a929226ae0819f2ec14b4a3d904f801cbb150d |
If not specified, any certificate trusted by the machine is accepted.
Use '*' to signify to accept all certificates. Note that this is not recommended due to security concerns.
This section provides a complete list of the SSH properties you can configure in the connection string for this provider.
Property | Description |
SSHAuthMode | The authentication method to be used to log on to an SFTP server. |
SSHClientCert | A private key to be used for authenticating the user. |
SSHClientCertPassword | The password of the SSHClientCert key if it has one. |
SSHClientCertSubject | The subject of the SSH client certificate. |
SSHClientCertType | The type of SSHClientCert private key. |
SSHServer | The SSH server. |
SSHPort | The SSH port. |
SSHUser | The SSH user. |
SSHPassword | The SSH password. |
SSHServerFingerprint | The SSH server fingerprint. |
UseSSH | Whether to tunnel the SQL Server connection over SSH. Use SSH. |
The authentication method to be used to log on to an SFTP server.
A private key to be used for authenticating the user.
SSHClientCert must contain a valid private key in order to use public key authentication. A public key is optional, if one is not included then the Sync App generates it from the private key. The Sync App sends the public key to the server and the connection is allowed if the user has authorized the public key.
The SSHClientCertType field specifies the type of the key store specified by SSHClientCert. If the store is password protected, specify the password in SSHClientCertPassword.
Some types of key stores are containers which may include multiple keys. By default the Sync App will select the first key in the store, but you can specify a specific key using SSHClientCertSubject.
The password of the SSHClientCert key if it has one.
This property is only used when authenticating to SFTP servers with SSHAuthMode set to PublicKey and SSHClientCert set to a private key.
The subject of the SSH client certificate.
When loading a certificate the subject is used to locate the certificate in the store.
If an exact match is not found, the store is searched for subjects containing the value of the property.
If a match is still not found, the property is set to an empty string, and no certificate is selected.
The special value "*" picks the first certificate in the certificate store.
The certificate subject is a comma separated list of distinguished name fields and values. For instance "CN=www.server.com, OU=test, C=US, [email protected]". Common fields and their meanings are displayed below.
Field | Meaning |
CN | Common Name. This is commonly a host name like www.server.com. |
O | Organization |
OU | Organizational Unit |
L | Locality |
S | State |
C | Country |
E | Email Address |
If a field value contains a comma it must be quoted.
The type of SSHClientCert private key.
This property can take one of the following values:
Types | Description | Allowed Blob Values |
MACHINE/USER | Blob values are not supported. | |
JKSFILE/JKSBLOB | base64-only | |
PFXFILE/PFXBLOB | A PKCS12-format (.pfx) file. Must contain both a certificate and a private key. | base64-only |
PEMKEY_FILE/PEMKEY_BLOB | A PEM-format file. Must contain an RSA, DSA, or OPENSSH private key. Can optionally contain a certificate matching the private key. | base64 or plain text. Newlines may be replaced with spaces when providing the blob as text. |
PPKFILE/PPKBLOB | A PuTTY-format private key created using the puttygen tool. | base64-only |
XMLFILE/XMLBLOB | An XML key in the format generated by the .NET RSA class: RSA.ToXmlString(true). | base64 or plain text. |
The SSH server.
The SSH server.
The SSH port.
The SSH port.
The SSH user.
The SSH user.
The SSH password.
The SSH password.
The SSH server fingerprint.
The SSH server fingerprint.
Whether to tunnel the SQL Server connection over SSH. Use SSH.
By default the Sync App will attempt to connect directly to SQL Server. When this option is enabled, the Sync App will instead establish an SSH connection with the SSHServer and tunnel the connection to SQL Server through it.
This section provides a complete list of the Firewall properties you can configure in the connection string for this provider.
Property | Description |
FirewallType | The protocol used by a proxy-based firewall. |
FirewallServer | The name or IP address of a proxy-based firewall. |
FirewallPort | The TCP port for a proxy-based firewall. |
FirewallUser | The user name to use to authenticate with a proxy-based firewall. |
FirewallPassword | A password used to authenticate to a proxy-based firewall. |
The protocol used by a proxy-based firewall.
This property specifies the protocol that the Sync App will use to tunnel traffic through the FirewallServer proxy. Note that by default, the Sync App connects to the system proxy; to disable this behavior and connect to one of the following proxy types, set ProxyAutoDetect to false.
Type | Default Port | Description |
TUNNEL | 80 | When this is set, the Sync App opens a connection to SQL Server and traffic flows back and forth through the proxy. |
SOCKS4 | 1080 | When this is set, the Sync App sends data through the SOCKS 4 proxy specified by FirewallServer and FirewallPort and passes the FirewallUser value to the proxy, which determines if the connection request should be granted. |
SOCKS5 | 1080 | When this is set, the Sync App sends data through the SOCKS 5 proxy specified by FirewallServer and FirewallPort. If your proxy requires authentication, set FirewallUser and FirewallPassword to credentials the proxy recognizes. |
To connect to HTTP proxies, use ProxyServer and ProxyPort. To authenticate to HTTP proxies, use ProxyAuthScheme, ProxyUser, and ProxyPassword.
The name or IP address of a proxy-based firewall.
This property specifies the IP address, DNS name, or host name of a proxy allowing traversal of a firewall. The protocol is specified by FirewallType: Use FirewallServer with this property to connect through SOCKS or do tunneling. Use ProxyServer to connect to an HTTP proxy.
Note that the Sync App uses the system proxy by default. To use a different proxy, set ProxyAutoDetect to false.
The TCP port for a proxy-based firewall.
This specifies the TCP port for a proxy allowing traversal of a firewall. Use FirewallServer to specify the name or IP address. Specify the protocol with FirewallType.
The user name to use to authenticate with a proxy-based firewall.
The FirewallUser and FirewallPassword properties are used to authenticate against the proxy specified in FirewallServer and FirewallPort, following the authentication method specified in FirewallType.
A password used to authenticate to a proxy-based firewall.
This property is passed to the proxy specified by FirewallServer and FirewallPort, following the authentication method specified by FirewallType.
This section provides a complete list of the Proxy properties you can configure in the connection string for this provider.
Property | Description |
ProxyAutoDetect | This indicates whether to use the system proxy settings or not. This takes precedence over other proxy settings, so you'll need to set ProxyAutoDetect to FALSE in order use custom proxy settings. |
ProxyServer | The hostname or IP address of a proxy to route HTTP traffic through. |
ProxyPort | The TCP port the ProxyServer proxy is running on. |
ProxyAuthScheme | The authentication type to use to authenticate to the ProxyServer proxy. |
ProxyUser | A user name to be used to authenticate to the ProxyServer proxy. |
ProxyPassword | A password to be used to authenticate to the ProxyServer proxy. |
ProxySSLType | The SSL type to use when connecting to the ProxyServer proxy. |
ProxyExceptions | A semicolon separated list of destination hostnames or IPs that are exempt from connecting through the ProxyServer . |
This indicates whether to use the system proxy settings or not. This takes precedence over other proxy settings, so you'll need to set ProxyAutoDetect to FALSE in order use custom proxy settings.
This takes precedence over other proxy settings, so you'll need to set ProxyAutoDetect to FALSE in order use custom proxy settings.
To connect to an HTTP proxy, see ProxyServer. For other proxies, such as SOCKS or tunneling, see FirewallType.
The hostname or IP address of a proxy to route HTTP traffic through.
The hostname or IP address of a proxy to route HTTP traffic through. The Sync App can use the HTTP, Windows (NTLM), or Kerberos authentication types to authenticate to an HTTP proxy.
If you need to connect through a SOCKS proxy or tunnel the connection, see FirewallType.
By default, the Sync App uses the system proxy. If you need to use another proxy, set ProxyAutoDetect to false.
The TCP port the ProxyServer proxy is running on.
The port the HTTP proxy is running on that you want to redirect HTTP traffic through. Specify the HTTP proxy in ProxyServer. For other proxy types, see FirewallType.
The authentication type to use to authenticate to the ProxyServer proxy.
This value specifies the authentication type to use to authenticate to the HTTP proxy specified by ProxyServer and ProxyPort.
Note that the Sync App will use the system proxy settings by default, without further configuration needed; if you want to connect to another proxy, you will need to set ProxyAutoDetect to false, in addition to ProxyServer and ProxyPort. To authenticate, set ProxyAuthScheme and set ProxyUser and ProxyPassword, if needed.
The authentication type can be one of the following:
If you need to use another authentication type, such as SOCKS 5 authentication, see FirewallType.
A user name to be used to authenticate to the ProxyServer proxy.
The ProxyUser and ProxyPassword options are used to connect and authenticate against the HTTP proxy specified in ProxyServer.
You can select one of the available authentication types in ProxyAuthScheme. If you are using HTTP authentication, set this to the user name of a user recognized by the HTTP proxy. If you are using Windows or Kerberos authentication, set this property to a user name in one of the following formats:
user@domain domain\user
A password to be used to authenticate to the ProxyServer proxy.
This property is used to authenticate to an HTTP proxy server that supports NTLM (Windows), Kerberos, or HTTP authentication. To specify the HTTP proxy, you can set ProxyServer and ProxyPort. To specify the authentication type, set ProxyAuthScheme.
If you are using HTTP authentication, additionally set ProxyUser and ProxyPassword to HTTP proxy.
If you are using NTLM authentication, set ProxyUser and ProxyPassword to your Windows password. You may also need these to complete Kerberos authentication.
For SOCKS 5 authentication or tunneling, see FirewallType.
By default, the Sync App uses the system proxy. If you want to connect to another proxy, set ProxyAutoDetect to false.
The SSL type to use when connecting to the ProxyServer proxy.
This property determines when to use SSL for the connection to an HTTP proxy specified by ProxyServer. This value can be AUTO, ALWAYS, NEVER, or TUNNEL. The applicable values are the following:
AUTO | Default setting. If the URL is an HTTPS URL, the Sync App will use the TUNNEL option. If the URL is an HTTP URL, the component will use the NEVER option. |
ALWAYS | The connection is always SSL enabled. |
NEVER | The connection is not SSL enabled. |
TUNNEL | The connection is through a tunneling proxy. The proxy server opens a connection to the remote host and traffic flows back and forth through the proxy. |
A semicolon separated list of destination hostnames or IPs that are exempt from connecting through the ProxyServer .
The ProxyServer is used for all addresses, except for addresses defined in this property. Use semicolons to separate entries.
Note that the Sync App uses the system proxy settings by default, without further configuration needed; if you want to explicitly configure proxy exceptions for this connection, you need to set ProxyAutoDetect = false, and configure ProxyServer and ProxyPort. To authenticate, set ProxyAuthScheme and set ProxyUser and ProxyPassword, if needed.
This section provides a complete list of the Logging properties you can configure in the connection string for this provider.
Property | Description |
LogModules | Core modules to be included in the log file. |
Core modules to be included in the log file.
Only the modules specified (separated by ';') will be included in the log file. By default all modules are included.
See the Logging page for an overview.
This section provides a complete list of the Schema properties you can configure in the connection string for this provider.
Property | Description |
Location | A path to the directory that contains the schema files defining tables, views, and stored procedures. |
BrowsableSchemas | This property restricts the schemas reported to a subset of the available schemas. For example, BrowsableSchemas=SchemaA,SchemaB,SchemaC. |
Tables | This property restricts the tables reported to a subset of the available tables. For example, Tables=TableA,TableB,TableC. |
Views | Restricts the views reported to a subset of the available tables. For example, Views=ViewA,ViewB,ViewC. |
A path to the directory that contains the schema files defining tables, views, and stored procedures.
The path to a directory which contains the schema files for the Sync App (.rsd files for tables and views, .rsb files for stored procedures). The folder location can be a relative path from the location of the executable. The Location property is only needed if you want to customize definitions (for example, change a column name, ignore a column, and so on) or extend the data model with new tables, views, or stored procedures.
If left unspecified, the default location is "%APPDATA%\\CData\\SQL Data Provider\\Schema" with %APPDATA% being set to the user's configuration directory:
This property restricts the schemas reported to a subset of the available schemas. For example, BrowsableSchemas=SchemaA,SchemaB,SchemaC.
Listing the schemas from databases can be expensive. Providing a list of schemas in the connection string improves the performance.
This property restricts the tables reported to a subset of the available tables. For example, Tables=TableA,TableB,TableC.
Listing the tables from some databases can be expensive. Providing a list of tables in the connection string improves the performance of the Sync App.
This property can also be used as an alternative to automatically listing views if you already know which ones you want to work with and there would otherwise be too many to work with.
Specify the tables you want in a comma-separated list. Each table should be a valid SQL identifier with any special characters escaped using square brackets, double-quotes or backticks. For example, Tables=TableA,[TableB/WithSlash],WithCatalog.WithSchema.`TableC With Space`.
Note that when connecting to a data source with multiple schemas or catalogs, you will need to provide the fully qualified name of the table in this property, as in the last example here, to avoid ambiguity between tables that exist in multiple catalogs or schemas.
Restricts the views reported to a subset of the available tables. For example, Views=ViewA,ViewB,ViewC.
Listing the views from some databases can be expensive. Providing a list of views in the connection string improves the performance of the Sync App.
This property can also be used as an alternative to automatically listing views if you already know which ones you want to work with and there would otherwise be too many to work with.
Specify the views you want in a comma-separated list. Each view should be a valid SQL identifier with any special characters escaped using square brackets, double-quotes or backticks. For example, Views=ViewA,[ViewB/WithSlash],WithCatalog.WithSchema.`ViewC With Space`.
Note that when connecting to a data source with multiple schemas or catalogs, you will need to provide the fully qualified name of the table in this property, as in the last example here, to avoid ambiguity between tables that exist in multiple catalogs or schemas.
This section provides a complete list of the Miscellaneous properties you can configure in the connection string for this provider.
Property | Description |
ApplicationIntent | The application intent connection string property expresses the client application's request to be directed either to a read-write or read-only version of an availability group database. To use read-only routing, a client must use an application intent of read-only in the connection string when connecting to the availability group listener. Without the read-only application intent, connections to the availability group listener are directed to the database on the primary replica. |
ApplicationName | The application name connection string property expresses the HTTP User-Agent. |
IncludeTableTypes | If set to true, the provider will query for the types of individual tables and views. |
MaxRows | Limits the number of rows returned rows when no aggregation or group by is used in the query. This helps avoid performance issues at design time. |
Other | These hidden properties are used only in specific use cases. |
QueryPassthrough | This option passes the query to the SQL Server server as is. |
Timeout | A timeout for the provider. |
The application intent connection string property expresses the client application's request to be directed either to a read-write or read-only version of an availability group database. To use read-only routing, a client must use an application intent of read-only in the connection string when connecting to the availability group listener. Without the read-only application intent, connections to the availability group listener are directed to the database on the primary replica.
ApplicationIntent allows you to connect to a read-only secondary when connecting to an Availability Group Listener.
The application name connection string property expresses the HTTP User-Agent.
If set to true, the provider will query for the types of individual tables and views.
If set to true, the Sync App will query SQL Server for the types of individual tables and views.
Limits the number of rows returned rows when no aggregation or group by is used in the query. This helps avoid performance issues at design time.
Limits the number of rows returned rows when no aggregation or group by is used in the query. This helps avoid performance issues at design time.
These hidden properties are used only in specific use cases.
The properties listed below are available for specific use cases. Normal driver use cases and functionality should not require these properties.
Specify multiple properties in a semicolon-separated list.
DefaultColumnSize | Sets the default length of string fields when the data source does not provide column length in the metadata. The default value is 2000. |
ConvertDateTimeToGMT | Determines whether to convert date-time values to GMT, instead of the local time of the machine. |
RecordToFile=filename | Records the underlying socket data transfer to the specified file. |
This option passes the query to the SQL Server server as is.
When this is set, queries are passed through directly to SQL Server.
A timeout for the provider.
If the Timeout property is set to 0, operations will not time out; instead, they will run until they complete successfully or encounter an error condition.
If Timeout expires and the operation is not yet complete, the Sync App raises an error condition.