CData Python Connector for SAS Data Sets

Build 24.0.9062

Pandas から

コネクタと組み合わせることで、Pandas を使用してSAS Data Sets データを含むデータフレームを生成できます。 作成したデーフレームは、他のさまざまなPython パッケージに渡すことができます。

接続

Pandas はSQLAlchemy エンジンに依存してクエリを実行します。Pandas を使用する前に、インポートする必要があります。
import pandas as pd
from sqlalchemy import create_engine
engine = create_engine("sasdatasets:///?URI=C:\myfolder;")

データのクエリ

Pandas では、SELECT クエリはread_sql() メソッド呼び出しで、関連する接続オブジェクトと共に提供されます。Pandas はその接続上でクエリを実行し、さまざまな目的で使用されるデータフレームの形式で結果を返します。
df = pd.read_sql("""
	SELECT
	   Id,
	   Name,
     $exNumericCol;
	FROM Account;""", engine)
print(df)

データの編集

新しいレコードをテーブルに挿入するには、新しいデータフレームを作成し、それに応じてフィールドを定義するだけです。 これが完了したら、以下の例のようにデータフレームでto_sql() を呼び出すだけで、コネクタでINSERT 操作を実行できます。"if _exists" 引数は、Pandas がテーブルをゼロから構築しようとするのを防ぐために、必ず"append" に設定してください:Pandas がデータフレームのインデックスをカラムとして書き込まないようにするには、index=False を設定します。
df = pd.DataFrame({"Id": ["Jon Doe"], "Name": ["Floppy Disks"]})
df.to_sql("Account", con=engine, if_exists="append", index=False)

Copyright (c) 2024 CData Software, Inc. - All rights reserved.
Build 24.0.9062