The CData Sync App provides a straightforward way to continuously pipeline your AlloyDB data to any database, data lake, or data warehouse, making it easily available for Analytics, Reporting, AI, and Machine Learning.
The AlloyDB connector can be used from the CData Sync application to pull data from AlloyDB and move it to any of the supported destinations.
AlloyDB is built from PostgreSQL, starting from PostgreSQL version 14 compatibility (Google will maintain AlloyDB parallel to new versions of PostgreSQL). The Sync App enables access to AlloyDB via PostgreSQL connectivity standards.
For required properties, see the Settings tab.
For connection properties that are not typically required, see the Advanced tab.
The following connection properties are required in order to connect to AlloyDB.
No further action is required to leverage Standard Authentication to connect.
There are additional methods of authentication supported by the Sync App which must be enabled in the pg_hba.conf file on the AlloyDB server.
You may find instructions about authentication setup on the AlloyDB Server here.
MD5
You can authenticate using MD5 password verification by setting the auth-method in the pg_hba.conf file to md5.
SASL
The Sync App can authenticate by verifying the password with SASL (particularly, SCRAM-SHA-256).
To use this authentication method, set the auth-method in the pg_hba.conf file to scram-sha-256.
The authentication with Kerberos is initiated by AlloyDB Server when the CData Sync App is trying to connect to it. Set up Kerberos on the AlloyDB Server to activate this authentication method. Once you have Kerberos authentication set up on the AlloyDB server, see Using Kerberos for details regarding how to authenticate with Kerberos by the Sync App.
Authenticating to AlloyDB via Kerberos requires you to define authentication properties and to choose how Kerberos should retrieve authentication tickets.
The Sync App provides three ways to retrieve the required Kerberos ticket, depending on whether or not the KRB5CCNAME and/or KerberosKeytabFile variables exist in your environment.
MIT Kerberos Credential Cache File
This option enables you to use the MIT Kerberos Ticket Manager or kinit command to get tickets. With this option there is no need to set the User or Password connection properties.
This option requires that KRB5CCNAME has been created in your system.
To enable ticket retrieval via MIT Cerberos Credential Cache Files:
If the ticket is successfully obtained, the ticket information appears in Kerberos Ticket Manager and is stored in the credential cache file.
The Sync App uses the cache file to obtain the Kerberos ticket to connect to AlloyDB.
Note: If you would prefer not to edit KRB5CCNAME, you can use the KerberosTicketCache property to set the file path manually. After this is set, the Sync App uses the specified cache file to obtain the Kerberos ticket to connect to AlloyDB.
Keytab File
If your environment lacks the KRB5CCNAME environment variable, you can retrieve a Kerberos ticket using a Keytab File.
To use this method, set the User property to the desired username, and set the KerberosKeytabFile property to a file path pointing to the keytab file associated with the user.
User and Password
If your environment lacks the KRB5CCNAME environment variable and the KerberosKeytabFile property has not been set, you can retrieve a ticket using a user and password combination.
To use this method, set the User and Password properties to the user/password combination that you use to authenticate with AlloyDB.
To enable this kind of cross-realm authentication, set the KerberosRealm and KerberosKDC properties to the values required for user authentication. Also, set the KerberosServiceRealm and KerberosServiceKDC properties to the values required to obtain the service ticket.
CData Sync can use logical replication configured in AlloyDB to incrementally update your destination table. AlloyDB uses logical decoding to surface the contents of the write-ahead logs, which track data changes in the database, into a readable format. Those changes are read by Sync and pushed into the destination.
SELECT pg_create_logical_replication_slot('cdatasync_replication_slot', 'test_decoding');
Note: The slot name'cdatasync_replication_slot' is an example and can be substituted with any name. You will need this slot name when creating your Job in Sync. It is important that this slot is only used by Sync since changes are consumed when reading from the slot. ALTER ROLE <postgres-user> WITH REPLICATION;
Logical Replication allows Sync to track deleted records when the source table has a primary key. If the source table does not have a primary key, Sync will not be able to retrieve deleted records.
This section details a selection of advanced features of the AlloyDB Sync App.
Use SSL Configuration to adjust how Sync App handles TLS/SSL certificate negotiations. You can choose from various certificate formats; see the SSLServerCert property under "Connection String Options" for more information.
Configure the Sync App for compliance with Firewall and Proxy, including Windows proxies. You can also set up tunnel connections.
See Logging for an overview of configuration settings that can be used to refine CData logging. For basic logging, you only need to set two connection properties, but there are numerous features that support more refined logging, where you can select subsets of information to be logged using the LogModules connection property.
By default, the Sync App attempts to negotiate SSL/TLS by checking the server's certificate against the system's trusted certificate store.
To specify another certificate, see the SSLServerCert property for the available formats to do so.
The AlloyDB Sync App also supports setting client certificates. Set the following to connect using a client certificate.
Set the following properties:
The Sync App models data directly from AlloyDB.
The Sync App maps types from the data source to the corresponding data type available in the schema. The table below documents these mappings.
AlloyDB | CData Schema |
abstime | string |
aclitem | string |
bigint | long |
bigserial | long |
bit varying | string |
bit | string |
boolean | bool |
box | string |
bytea | binary |
char | string |
character varying | string |
character | string |
cid | string |
cidr | string |
circle | string |
date | date |
daterange | string |
double precision | float |
gtsvector | string |
inet | string |
int2vector | string |
int4range | string |
int8range | string |
integer | int |
json | string |
jsonb | binary |
line | string |
lseg | string |
macaddr8 | string |
macaddr | string |
money | decimal |
name | string |
numeric | decimal |
numrange | string |
oid | string |
oidvector | string |
path | string |
pg_dependencies | string |
pg_lsn | string |
pg_ndistinct | string |
pg_node_tree | string |
point | string |
polygon | string |
real | float |
refcursor | string |
regclass | string |
regconfig | string |
regdictionary | string |
regnamespace | string |
regoper | string |
regoperator | string |
regproc | string |
regprocedure | string |
regrole | string |
regtype | string |
reltime | string |
serial | int |
smallint | int |
smallserial | int |
smgr | string |
text | string |
tid | string |
time with time zone | string |
time without time zone | time |
timestamp with time zone | datetime |
timestamp without time zone | datetime |
tinterval | string |
tsquery | string |
tsrange | string |
tstzrange | string |
tsvector | string |
txid_snapshot | string |
uuid | string |
xid | string |
xml | string |
The connection string properties are the various options that can be used to establish a connection. This section provides a complete list of the options you can configure in the connection string for this provider. Click the links for further details.
For more information on establishing a connection, see Establishing a Connection.
Property | Description |
Server | The host name or IP address of the server. |
Database | The name of the AlloyDB database. |
User | The AlloyDB user account used to authenticate. |
Password | The password used to authenticate the user. |
Port | The port number of the AlloyDB server. |
UseSSL | This field sets whether SSL is enabled. |
Visibility | Visibility restrictions used to filter exposed metadata for tables with privileges granted to them for the current user. |
Property | Description |
KerberosKDC | The Kerberos Key Distribution Center (KDC) service used to authenticate the user. |
KerberosRealm | The Kerberos Realm used to authenticate the user. |
KerberosSPN | The service principal name (SPN) for the Kerberos Domain Controller. |
KerberosKeytabFile | The Keytab file containing your pairs of Kerberos principals and encrypted keys. |
KerberosServiceRealm | The Kerberos realm of the service. |
KerberosServiceKDC | The Kerberos KDC of the service. |
KerberosTicketCache | The full file path to an MIT Kerberos credential cache file. |
Property | Description |
SSLClientCert | The TLS/SSL client certificate store for SSL Client Authentication (2-way SSL). |
SSLClientCertType | The type of key store containing the TLS/SSL client certificate. |
SSLClientCertPassword | The password for the TLS/SSL client certificate. |
SSLClientCertSubject | The subject of the TLS/SSL client certificate. |
SSLServerCert | The certificate to be accepted from the server when connecting using TLS/SSL. |
Property | Description |
SSHAuthMode | The authentication method used when establishing an SSH Tunnel to the service. |
SSHClientCert | A certificate to be used for authenticating the SSHUser. |
SSHClientCertPassword | The password of the SSHClientCert key if it has one. |
SSHClientCertSubject | The subject of the SSH client certificate. |
SSHClientCertType | The type of SSHClientCert private key. |
SSHServer | The SSH server. |
SSHPort | The SSH port. |
SSHUser | The SSH user. |
SSHPassword | The SSH password. |
SSHServerFingerprint | The SSH server fingerprint. |
UseSSH | Whether to tunnel the AlloyDB connection over SSH. Use SSH. |
Property | Description |
FirewallType | The protocol used by a proxy-based firewall. |
FirewallServer | The name or IP address of a proxy-based firewall. |
FirewallPort | The TCP port for a proxy-based firewall. |
FirewallUser | The user name to use to authenticate with a proxy-based firewall. |
FirewallPassword | A password used to authenticate to a proxy-based firewall. |
Property | Description |
LogModules | Core modules to be included in the log file. |
Property | Description |
Location | A path to the directory that contains the schema files defining tables, views, and stored procedures. |
BrowsableSchemas | This property restricts the schemas reported to a subset of the available schemas. For example, BrowsableSchemas=SchemaA,SchemaB,SchemaC. |
Tables | This property restricts the tables reported to a subset of the available tables. For example, Tables=TableA,TableB,TableC. |
Views | Restricts the views reported to a subset of the available tables. For example, Views=ViewA,ViewB,ViewC. |
IgnoredSchemas | Visibility restriction filter which is used to hide schemas from the list of schemas obtained by querying metadata. For example, 'information_schema, pg_catalog'. Schema names are case sensitive. |
Property | Description |
AllowPreparedStatement | Prepare a query statement before its execution. |
BrowsePartitions | By default, the provider exposes the super table and its partitions by metadata. You may hide sub partitions by setting this property to false. |
FetchResultSetMetadata | This field sets whether the provider retrieves metadata pertaining to the schema and table name for resultset columns returned by the server. |
IncludeTableTypes | If set to true, the provider will query for the types of individual tables and views. |
MaxRows | Limits the number of rows returned when no aggregation or GROUP BY is used in the query. This takes precedence over LIMIT clauses. |
Other | These hidden properties are used only in specific use cases. |
QueryPassthrough | This option passes the query to the AlloyDB server as is. |
Timeout | The value in seconds until the timeout error is thrown, canceling the operation. |
TimeZone | Notifies the server about the timezone on the client with a standard SET TIMEZONE query when a connection is being opened. |
This section provides a complete list of the Authentication properties you can configure in the connection string for this provider.
Property | Description |
Server | The host name or IP address of the server. |
Database | The name of the AlloyDB database. |
User | The AlloyDB user account used to authenticate. |
Password | The password used to authenticate the user. |
Port | The port number of the AlloyDB server. |
UseSSL | This field sets whether SSL is enabled. |
Visibility | Visibility restrictions used to filter exposed metadata for tables with privileges granted to them for the current user. |
The host name or IP address of the server.
The host name or IP of the server hosting the AlloyDB Database. If not set, the default value "localhost" is used.
The name of the AlloyDB database.
The database to connect to when connecting to the AlloyDB Server. If a database is not provided, the user's default database will be used.
The AlloyDB user account used to authenticate.
Together with Password, this field is used to authenticate against the AlloyDB server.
The password used to authenticate the user.
The User and Password are together used to authenticate with the server.
This field sets whether SSL is enabled.
This field sets whether the Sync App will attempt to negotiate TLS/SSL connections to the server. By default, the Sync App checks the server's certificate against the system's trusted certificate store. To specify another certificate, set SSLServerCert.
Visibility restrictions used to filter exposed metadata for tables with privileges granted to them for the current user.
By default, visibility filtering is not applied. Filtering values are case insensitive.
For example, the 'SELECT,INSERT' filter is restricting metadata visibility only for those tables which may be accessed by the current user for the SELECT and INSERT operations. Supported privilege values are SELECT, INSERT, UPDATE, DELETE, REFERENCES.
This section provides a complete list of the Kerberos properties you can configure in the connection string for this provider.
Property | Description |
KerberosKDC | The Kerberos Key Distribution Center (KDC) service used to authenticate the user. |
KerberosRealm | The Kerberos Realm used to authenticate the user. |
KerberosSPN | The service principal name (SPN) for the Kerberos Domain Controller. |
KerberosKeytabFile | The Keytab file containing your pairs of Kerberos principals and encrypted keys. |
KerberosServiceRealm | The Kerberos realm of the service. |
KerberosServiceKDC | The Kerberos KDC of the service. |
KerberosTicketCache | The full file path to an MIT Kerberos credential cache file. |
The Kerberos Key Distribution Center (KDC) service used to authenticate the user.
The Kerberos properties are used when using SPNEGO or Windows Authentication. The Sync App will request session tickets and temporary session keys from the Kerberos KDC service. The Kerberos KDC service is conventionally colocated with the domain controller.
If Kerberos KDC is not specified, the Sync App will attempt to detect these properties automatically from the following locations:
The Kerberos Realm used to authenticate the user.
The Kerberos properties are used when using SPNEGO or Windows Authentication. The Kerberos Realm is used to authenticate the user with the Kerberos Key Distribution Service (KDC). The Kerberos Realm can be configured by an administrator to be any string, but conventionally it is based on the domain name.
If Kerberos Realm is not specified, the Sync App will attempt to detect these properties automatically from the following locations:
The service principal name (SPN) for the Kerberos Domain Controller.
If the SPN on the Kerberos Domain Controller is not the same as the URL that you are authenticating to, use this property to set the SPN.
The Keytab file containing your pairs of Kerberos principals and encrypted keys.
The Keytab file containing your pairs of Kerberos principals and encrypted keys.
The Kerberos realm of the service.
The KerberosServiceRealm is the specify the service Kerberos realm when using cross-realm Kerberos authentication.
In most cases, a single realm and KDC machine are used to perform the Kerberos authentication and this property is not required.
This property is available for complex setups where a different realm and KDC machine are used to obtain an authentication ticket (AS request) and a service ticket (TGS request).
The Kerberos KDC of the service.
The KerberosServiceKDC is used to specify the service Kerberos KDC when using cross-realm Kerberos authentication.
In most cases, a single realm and KDC machine are used to perform the Kerberos authentication and this property is not required.
This property is available for complex setups where a different realm and KDC machine are used to obtain an authentication ticket (AS request) and a service ticket (TGS request).
The full file path to an MIT Kerberos credential cache file.
This property can be set if you wish to use a credential cache file that was created using the MIT Kerberos Ticket Manager or kinit command.
This section provides a complete list of the SSL properties you can configure in the connection string for this provider.
Property | Description |
SSLClientCert | The TLS/SSL client certificate store for SSL Client Authentication (2-way SSL). |
SSLClientCertType | The type of key store containing the TLS/SSL client certificate. |
SSLClientCertPassword | The password for the TLS/SSL client certificate. |
SSLClientCertSubject | The subject of the TLS/SSL client certificate. |
SSLServerCert | The certificate to be accepted from the server when connecting using TLS/SSL. |
The TLS/SSL client certificate store for SSL Client Authentication (2-way SSL).
The name of the certificate store for the client certificate.
The SSLClientCertType field specifies the type of the certificate store specified by SSLClientCert. If the store is password protected, specify the password in SSLClientCertPassword.
SSLClientCert is used in conjunction with the SSLClientCertSubject field in order to specify client certificates. If SSLClientCert has a value, and SSLClientCertSubject is set, a search for a certificate is initiated. See SSLClientCertSubject for more information.
Designations of certificate stores are platform-dependent.
The following are designations of the most common User and Machine certificate stores in Windows:
MY | A certificate store holding personal certificates with their associated private keys. |
CA | Certifying authority certificates. |
ROOT | Root certificates. |
SPC | Software publisher certificates. |
In Java, the certificate store normally is a file containing certificates and optional private keys.
When the certificate store type is PFXFile, this property must be set to the name of the file. When the type is PFXBlob, the property must be set to the binary contents of a PFX file (for example, PKCS12 certificate store).
The type of key store containing the TLS/SSL client certificate.
This property can take one of the following values:
USER - default | For Windows, this specifies that the certificate store is a certificate store owned by the current user. Note that this store type is not available in Java. |
MACHINE | For Windows, this specifies that the certificate store is a machine store. Note that this store type is not available in Java. |
PFXFILE | The certificate store is the name of a PFX (PKCS12) file containing certificates. |
PFXBLOB | The certificate store is a string (base-64-encoded) representing a certificate store in PFX (PKCS12) format. |
JKSFILE | The certificate store is the name of a Java key store (JKS) file containing certificates. Note that this store type is only available in Java. |
JKSBLOB | The certificate store is a string (base-64-encoded) representing a certificate store in JKS format. Note that this store type is only available in Java. |
PEMKEY_FILE | The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate. |
PEMKEY_BLOB | The certificate store is a string (base64-encoded) that contains a private key and an optional certificate. |
PUBLIC_KEY_FILE | The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate. |
PUBLIC_KEY_BLOB | The certificate store is a string (base-64-encoded) that contains a PEM- or DER-encoded public key certificate. |
SSHPUBLIC_KEY_FILE | The certificate store is the name of a file that contains an SSH-style public key. |
SSHPUBLIC_KEY_BLOB | The certificate store is a string (base-64-encoded) that contains an SSH-style public key. |
P7BFILE | The certificate store is the name of a PKCS7 file containing certificates. |
PPKFILE | The certificate store is the name of a file that contains a PuTTY Private Key (PPK). |
XMLFILE | The certificate store is the name of a file that contains a certificate in XML format. |
XMLBLOB | The certificate store is a string that contains a certificate in XML format. |
The password for the TLS/SSL client certificate.
If the certificate store is of a type that requires a password, this property is used to specify that password to open the certificate store.
The subject of the TLS/SSL client certificate.
When loading a certificate the subject is used to locate the certificate in the store.
If an exact match is not found, the store is searched for subjects containing the value of the property. If a match is still not found, the property is set to an empty string, and no certificate is selected.
The special value "*" picks the first certificate in the certificate store.
The certificate subject is a comma separated list of distinguished name fields and values. For example, "CN=www.server.com, OU=test, C=US, [email protected]". The common fields and their meanings are shown below.
Field | Meaning |
CN | Common Name. This is commonly a host name like www.server.com. |
O | Organization |
OU | Organizational Unit |
L | Locality |
S | State |
C | Country |
E | Email Address |
If a field value contains a comma, it must be quoted.
The certificate to be accepted from the server when connecting using TLS/SSL.
If using a TLS/SSL connection, this property can be used to specify the TLS/SSL certificate to be accepted from the server. Any other certificate that is not trusted by the machine is rejected.
This property can take the following forms:
Description | Example |
A full PEM Certificate (example shortened for brevity) | -----BEGIN CERTIFICATE----- MIIChTCCAe4CAQAwDQYJKoZIhv......Qw== -----END CERTIFICATE----- |
A path to a local file containing the certificate | C:\cert.cer |
The public key (example shortened for brevity) | -----BEGIN RSA PUBLIC KEY----- MIGfMA0GCSq......AQAB -----END RSA PUBLIC KEY----- |
The MD5 Thumbprint (hex values can also be either space or colon separated) | ecadbdda5a1529c58a1e9e09828d70e4 |
The SHA1 Thumbprint (hex values can also be either space or colon separated) | 34a929226ae0819f2ec14b4a3d904f801cbb150d |
If not specified, any certificate trusted by the machine is accepted.
Use '*' to signify to accept all certificates. Note that this is not recommended due to security concerns.
This section provides a complete list of the SSH properties you can configure in the connection string for this provider.
Property | Description |
SSHAuthMode | The authentication method used when establishing an SSH Tunnel to the service. |
SSHClientCert | A certificate to be used for authenticating the SSHUser. |
SSHClientCertPassword | The password of the SSHClientCert key if it has one. |
SSHClientCertSubject | The subject of the SSH client certificate. |
SSHClientCertType | The type of SSHClientCert private key. |
SSHServer | The SSH server. |
SSHPort | The SSH port. |
SSHUser | The SSH user. |
SSHPassword | The SSH password. |
SSHServerFingerprint | The SSH server fingerprint. |
UseSSH | Whether to tunnel the AlloyDB connection over SSH. Use SSH. |
The authentication method used when establishing an SSH Tunnel to the service.
A certificate to be used for authenticating the SSHUser.
SSHClientCert must contain a valid private key in order to use public key authentication. A public key is optional, if one is not included then the Sync App generates it from the private key. The Sync App sends the public key to the server and the connection is allowed if the user has authorized the public key.
The SSHClientCertType field specifies the type of the key store specified by SSHClientCert. If the store is password protected, specify the password in SSHClientCertPassword.
Some types of key stores are containers which may include multiple keys. By default the Sync App will select the first key in the store, but you can specify a specific key using SSHClientCertSubject.
The password of the SSHClientCert key if it has one.
This property is only used when authenticating to SFTP servers with SSHAuthMode set to PublicKey and SSHClientCert set to a private key.
The subject of the SSH client certificate.
When loading a certificate the subject is used to locate the certificate in the store.
If an exact match is not found, the store is searched for subjects containing the value of the property.
If a match is still not found, the property is set to an empty string, and no certificate is selected.
The special value "*" picks the first certificate in the certificate store.
The certificate subject is a comma separated list of distinguished name fields and values. For instance "CN=www.server.com, OU=test, C=US, [email protected]". Common fields and their meanings are displayed below.
Field | Meaning |
CN | Common Name. This is commonly a host name like www.server.com. |
O | Organization |
OU | Organizational Unit |
L | Locality |
S | State |
C | Country |
E | Email Address |
If a field value contains a comma it must be quoted.
The type of SSHClientCert private key.
This property can take one of the following values:
Types | Description | Allowed Blob Values |
MACHINE/USER | Blob values are not supported. | |
JKSFILE/JKSBLOB | base64-only | |
PFXFILE/PFXBLOB | A PKCS12-format (.pfx) file. Must contain both a certificate and a private key. | base64-only |
PEMKEY_FILE/PEMKEY_BLOB | A PEM-format file. Must contain an RSA, DSA, or OPENSSH private key. Can optionally contain a certificate matching the private key. | base64 or plain text. Newlines may be replaced with spaces when providing the blob as text. |
PPKFILE/PPKBLOB | A PuTTY-format private key created using the puttygen tool. | base64-only |
XMLFILE/XMLBLOB | An XML key in the format generated by the .NET RSA class: RSA.ToXmlString(true). | base64 or plain text. |
The SSH server.
The SSH server.
The SSH port.
The SSH port.
The SSH user.
The SSH user.
The SSH password.
The SSH password.
The SSH server fingerprint.
The SSH server fingerprint.
Whether to tunnel the AlloyDB connection over SSH. Use SSH.
By default the Sync App will attempt to connect directly to AlloyDB. When this option is enabled, the Sync App will instead establish an SSH connection with the SSHServer and tunnel the connection to AlloyDB through it.
This section provides a complete list of the Firewall properties you can configure in the connection string for this provider.
Property | Description |
FirewallType | The protocol used by a proxy-based firewall. |
FirewallServer | The name or IP address of a proxy-based firewall. |
FirewallPort | The TCP port for a proxy-based firewall. |
FirewallUser | The user name to use to authenticate with a proxy-based firewall. |
FirewallPassword | A password used to authenticate to a proxy-based firewall. |
The protocol used by a proxy-based firewall.
This property specifies the protocol that the Sync App will use to tunnel traffic through the FirewallServer proxy.
Type | Default Port | Description |
TUNNEL | 80 | When this is set, the Sync App opens a connection to AlloyDB and traffic flows back and forth through the proxy. |
SOCKS4 | 1080 | When this is set, the Sync App sends data through the SOCKS 4 proxy specified by FirewallServer and FirewallPort and passes the FirewallUser value to the proxy, which determines if the connection request should be granted. |
SOCKS5 | 1080 | When this is set, the Sync App sends data through the SOCKS 5 proxy specified by FirewallServer and FirewallPort. If your proxy requires authentication, set FirewallUser and FirewallPassword to credentials the proxy recognizes. |
The name or IP address of a proxy-based firewall.
This property specifies the IP address, DNS name, or host name of a proxy allowing traversal of a firewall. The protocol is specified by FirewallType: Use FirewallServer with this property to connect through SOCKS or do tunneling.
The TCP port for a proxy-based firewall.
This specifies the TCP port for a proxy allowing traversal of a firewall. Use FirewallServer to specify the name or IP address. Specify the protocol with FirewallType.
The user name to use to authenticate with a proxy-based firewall.
The FirewallUser and FirewallPassword properties are used to authenticate against the proxy specified in FirewallServer and FirewallPort, following the authentication method specified in FirewallType.
A password used to authenticate to a proxy-based firewall.
This property is passed to the proxy specified by FirewallServer and FirewallPort, following the authentication method specified by FirewallType.
This section provides a complete list of the Logging properties you can configure in the connection string for this provider.
Property | Description |
LogModules | Core modules to be included in the log file. |
Core modules to be included in the log file.
Only the modules specified (separated by ';') will be included in the log file. By default all modules are included.
See the Logging page for an overview.
This section provides a complete list of the Schema properties you can configure in the connection string for this provider.
Property | Description |
Location | A path to the directory that contains the schema files defining tables, views, and stored procedures. |
BrowsableSchemas | This property restricts the schemas reported to a subset of the available schemas. For example, BrowsableSchemas=SchemaA,SchemaB,SchemaC. |
Tables | This property restricts the tables reported to a subset of the available tables. For example, Tables=TableA,TableB,TableC. |
Views | Restricts the views reported to a subset of the available tables. For example, Views=ViewA,ViewB,ViewC. |
IgnoredSchemas | Visibility restriction filter which is used to hide schemas from the list of schemas obtained by querying metadata. For example, 'information_schema, pg_catalog'. Schema names are case sensitive. |
A path to the directory that contains the schema files defining tables, views, and stored procedures.
The path to a directory which contains the schema files for the Sync App (.rsd files for tables and views, .rsb files for stored procedures). The folder location can be a relative path from the location of the executable. The Location property is only needed if you want to customize definitions (for example, change a column name, ignore a column, and so on) or extend the data model with new tables, views, or stored procedures.
If left unspecified, the default location is "%APPDATA%\\CData\\AlloyDB Data Provider\\Schema" with %APPDATA% being set to the user's configuration directory:
Platform | %APPDATA% |
Windows | The value of the APPDATA environment variable |
Linux | ~/.config |
This property restricts the schemas reported to a subset of the available schemas. For example, BrowsableSchemas=SchemaA,SchemaB,SchemaC.
Listing the schemas from databases can be expensive. Providing a list of schemas in the connection string improves the performance.
This property restricts the tables reported to a subset of the available tables. For example, Tables=TableA,TableB,TableC.
Listing the tables from some databases can be expensive. Providing a list of tables in the connection string improves the performance of the Sync App.
This property can also be used as an alternative to automatically listing views if you already know which ones you want to work with and there would otherwise be too many to work with.
Specify the tables you want in a comma-separated list. Each table should be a valid SQL identifier with any special characters escaped using square brackets, double-quotes or backticks. For example, Tables=TableA,[TableB/WithSlash],WithCatalog.WithSchema.`TableC With Space`.
Note that when connecting to a data source with multiple schemas or catalogs, you will need to provide the fully qualified name of the table in this property, as in the last example here, to avoid ambiguity between tables that exist in multiple catalogs or schemas.
Restricts the views reported to a subset of the available tables. For example, Views=ViewA,ViewB,ViewC.
Listing the views from some databases can be expensive. Providing a list of views in the connection string improves the performance of the Sync App.
This property can also be used as an alternative to automatically listing views if you already know which ones you want to work with and there would otherwise be too many to work with.
Specify the views you want in a comma-separated list. Each view should be a valid SQL identifier with any special characters escaped using square brackets, double-quotes or backticks. For example, Views=ViewA,[ViewB/WithSlash],WithCatalog.WithSchema.`ViewC With Space`.
Note that when connecting to a data source with multiple schemas or catalogs, you will need to provide the fully qualified name of the table in this property, as in the last example here, to avoid ambiguity between tables that exist in multiple catalogs or schemas.
Visibility restriction filter which is used to hide schemas from the list of schemas obtained by querying metadata. For example, 'information_schema, pg_catalog'. Schema names are case sensitive.
By default, restrictions are not applied.
This section provides a complete list of the Miscellaneous properties you can configure in the connection string for this provider.
Property | Description |
AllowPreparedStatement | Prepare a query statement before its execution. |
BrowsePartitions | By default, the provider exposes the super table and its partitions by metadata. You may hide sub partitions by setting this property to false. |
FetchResultSetMetadata | This field sets whether the provider retrieves metadata pertaining to the schema and table name for resultset columns returned by the server. |
IncludeTableTypes | If set to true, the provider will query for the types of individual tables and views. |
MaxRows | Limits the number of rows returned when no aggregation or GROUP BY is used in the query. This takes precedence over LIMIT clauses. |
Other | These hidden properties are used only in specific use cases. |
QueryPassthrough | This option passes the query to the AlloyDB server as is. |
Timeout | The value in seconds until the timeout error is thrown, canceling the operation. |
TimeZone | Notifies the server about the timezone on the client with a standard SET TIMEZONE query when a connection is being opened. |
Prepare a query statement before its execution.
If the AllowPreparedStatement property is set to false, statements are parsed each time they are executed. Setting this property to false can be useful if you are executing many different queries only once.
If you are executing the same query repeatedly, you will generally see better performance by leaving this property set to the default, True. Preparing the query avoids recompiling the same query over and over. However, prepared statements also require the Sync App to keep the connection active and open while the statement is prepared.
By default, the provider exposes the super table and its partitions by metadata. You may hide sub partitions by setting this property to false.
This property has an effect on the server with version 10 and later.
This field sets whether the provider retrieves metadata pertaining to the schema and table name for resultset columns returned by the server.
By default, the Sync App will not request that the server provides detailed information about resultset columns like the table name or schema name. It requires issuing additional metadata queries via Sync App , and it may affect query performance essentially in some scenarios. Consider setting this property to True when you need such detailed descriptive information for the resultset columns.
If set to true, the provider will query for the types of individual tables and views.
If set to true, the Sync App will query the AlloyDB server for the types of individual tables and views.
Limits the number of rows returned when no aggregation or GROUP BY is used in the query. This takes precedence over LIMIT clauses.
Limits the number of rows returned when no aggregation or GROUP BY is used in the query. This takes precedence over LIMIT clauses.
These hidden properties are used only in specific use cases.
The properties listed below are available for specific use cases. Normal driver use cases and functionality should not require these properties.
Specify multiple properties in a semicolon-separated list.
DefaultColumnSize | Sets the default length of string fields when the data source does not provide column length in the metadata. The default value is 2000. |
ConvertDateTimeToGMT | Determines whether to convert date-time values to GMT, instead of the local time of the machine. |
RecordToFile=filename | Records the underlying socket data transfer to the specified file. |
This option passes the query to the AlloyDB server as is.
When this is set, queries are passed through directly to AlloyDB.
The value in seconds until the timeout error is thrown, canceling the operation.
If Timeout = 0, operations do not time out. The operations run until they complete successfully or until they encounter an error condition.
If Timeout expires and the operation is not yet complete, the Sync App throws an exception.
Notifies the server about the timezone on the client with a standard SET TIMEZONE query when a connection is being opened.
The server stores time with timezone and timestamp with timezone in UTC. When the server is accepting a value without timezone specified explicitly, it uses the TimeZone for the respective adjustment to UTC.
If the TimeZone property is not set, the provider uses the client's local timezone. Setting this property can be useful when you need the server to convert to a specific timezone, which is different from the client's local timezone.