CData Python Connector for Backlog

Build 23.0.8839

Petl から

The 本製品 can be used to create ETL applications and pipelines for CSV data in Python using Petl.

Install Required Modules

Install the Petl modules using the pip utility.
pip install petl


After you import the modules, including the CData Python Connector for Backlog, you can use the 本製品's connect function to create a connection using a valid Backlog connection string. If you prefer not to use a direct connection, you can use a SQLAlchemy engine.
import petl as etl
import cdata.backlog as mod
cnxn = mod.connect("ApiKey=jQJ45617PnmrZAtrPnYWqGtBhojsX9;Url=")

Extract, Transform, and Load the Backlog Data

Create a SQL query string and store the query results in a DataFrame.
sql = "SELECT	Id, ProjectID FROM Issues "
table1 = etl.fromdb(cnxn,sql)

Loading Data

With the query results stored in a DataFrame, you can load your data into any supported Petl destination. The following example loads the data into a CSV file.

Modifying Data

Insert new rows into Backlog tables using Petl's appenddb function.
table1 = [['Id','ProjectID'],['Jon Doe','John']]

Copyright (c) 2024 CData Software, Inc. - All rights reserved.
Build 23.0.8839