Power BI Connector for Sage 200

Build 24.0.9060

SELECT Statements

A SELECT statement can consist of the following basic clauses. You can access this statement by using the Odbc.Query function in the M formula language.

  • SELECT
  • INTO
  • FROM
  • JOIN
  • WHERE
  • GROUP BY
  • HAVING
  • UNION
  • ORDER BY
  • LIMIT

SELECT Syntax

The following syntax diagram outlines the syntax supported by the SQL engine of the connector:

SELECT {
  [ TOP <numeric_literal> | DISTINCT ]
  { 
    * 
    | { 
        <expression> [ [ AS ] <column_reference> ] 
        | { <table_name> | <correlation_name> } .* 
      } [ , ... ] 
  }
  { 
    FROM <table_reference> [ [ AS ] <identifier> ] 
  } [ , ... ]
  [ [  
      INNER | { { LEFT | RIGHT | FULL } [ OUTER ] } 
    ] JOIN <table_reference> [ ON <search_condition> ] [ [ AS ] <identifier> ] 
  ] [ ... ] 
  [ WHERE <search_condition> ]
  [ GROUP BY <column_reference> [ , ... ]
  [ HAVING <search_condition> ]
  [ UNION [ ALL ] <select_statement> ]
  [ 
    ORDER BY 
    <column_reference> [ ASC | DESC ] [ NULLS FIRST | NULLS LAST ]
  ]
  [ 
    LIMIT <expression>
    [ 
      { OFFSET | , }
      <expression> 
    ]
  ] 
}

<expression> ::=
  | <column_reference>
  | @ <parameter> 
  | ?
  | COUNT( * | { [ DISTINCT ] <expression> } )
  | { AVG | MAX | MIN | SUM | COUNT } ( <expression> ) 
  | NULLIF ( <expression> , <expression> ) 
  | COALESCE ( <expression> , ... ) 
  | CASE <expression>
      WHEN { <expression> | <search_condition> } THEN { <expression> | NULL } [ ... ]
    [ ELSE { <expression> | NULL } ]
    END 
  | {RANK() | DENSE_RANK()} OVER ([PARTITION BY <column_reference>] {ORDER BY <column_reference>})
  | <literal>
  | <sql_function> 

<search_condition> ::= 
  {
    <expression> { = | > | < | >= | <= | <> | != | LIKE | NOT LIKE | IN | NOT IN | IS NULL | IS NOT NULL | AND | OR | CONTAINS | BETWEEN } [ <expression> ]
  } [ { AND | OR } ... ] 

Examples

  1. Return all columns:
    SELECT * FROM Banks
  2. Rename a column:
    SELECT [Code] AS MY_Code FROM Banks
  3. Cast a column's data as a different data type:
    SELECT CAST(AnnualRevenue AS VARCHAR) AS Str_AnnualRevenue FROM Banks
  4. Search data:
    SELECT * FROM Banks WHERE Description = 'Bob'
  5. Return the number of items matching the query criteria:
    SELECT COUNT(*) AS MyCount FROM Banks 
  6. Return the number of unique items matching the query criteria:
    SELECT COUNT(DISTINCT Code) FROM Banks 
  7. Return the unique items matching the query criteria:
    SELECT DISTINCT Code FROM Banks 
  8. Sort a result set in ascending order:
    SELECT Id, Code FROM Banks  ORDER BY Code ASC
  9. Restrict a result set to the specified number of rows:
    SELECT Id, Code FROM Banks LIMIT 10 
  10. Parameterize a query to pass in inputs at execution time. This enables you to create prepared statements and mitigate SQL injection attacks.
    SELECT * FROM Banks WHERE Description = @param

Pseudo Columns

Some input-only fields are available in SELECT statements. These fields, called pseudo columns, do not appear as regular columns in the results, yet may be specified as part of the WHERE clause. You can use pseudo columns to access additional features from Sage 200.

    SELECT * FROM Banks WHERE Query = 'Column3 > 100'
    

Aggregate Functions

For SELECT examples using aggregate functions, see Aggregate Functions.

JOIN Queries

See JOIN Queries for SELECT query examples using JOINs.

Date Literal Functions

Date Literal Functions contains SELECT examples with date literal functions.

Window Functions

See Window Functions for SELECT examples containing window functions.

Table-Valued Functions

See Table-Valued Functions for SELECT examples with table-valued functions.

Copyright (c) 2024 CData Software, Inc. - All rights reserved.
Build 24.0.9060