CData Python Connector for kintone

Build 21.0.7930

From Petl

The provider can be used to create ETL applications and pipelines for CSV data in Python using Petl.

Install Required Modules

Install the Petl modules using the pip utility.

pip install petl

Connecting

Import the modules, including the CData Python Connector for kintone. You can then use the provider's connect function to create a connection using a valid kintone connection string. A SQLAlchemy engine may also be used instead of a direct connection.

import petl as etl
import cdata.kintone as mod
cnxn = mod.connect("User=myuseraccount;Password=mypassword;Url=http://subdomain.domain.com;GuestSpaceId=myspaceid")

Extract, Transform, and Load the kintone Data

Create a SQL query string and store the query results in a DataFrame.

sql = "SELECT	CreatorName, Text FROM Comments "
table1 = etl.fromdb(cnxn,sql)

Loading Data

With the query results stored in a DataFrame, you can load your data into any supported Petl destination. The following example loads the data into a CSV file.

etl.tocsv(table1,'output.csv')

Modifying Data

Insert new rows into kintone tables using Petl's appenddb function.

table1 = [['CreatorName','Text'],['Old to do','New to do']]
etl.appenddb(table1,cnxn,'Comments')

Copyright (c) 2021 CData Software, Inc. - All rights reserved.
Build 21.0.7930