CData Python Connector for IBM Cloud Object Storage

Build 20.0.7745

Petl から

The 本製品 can be used to create ETL applications and pipelines for CSV data in Python using Petl.

Install Required Modules

Install the Petl modules using the pip utility.

pip install petl

Connecting

Import the modules, including the CData Python Connector for IBM Cloud Object Storage. You can then use the 本製品's connect function to create a connection using a valid IBM Cloud Object Storage connection string. A SQLAlchemy engine may also be used instead of a direct connection.

import petl as etl
import cdata.ibmcloudobjectstorage as mod
cnxn = mod.connect("ApiKey=myApiKey;CloudObjectStorageCRN=MyInstanceCRN;Region=myRegion;OAuthClientId=MyOAuthClientId;OAuthClientSecret=myOAuthClientSecret;")

Extract, Transform, and Load the IBM Cloud Object Storage Data

Create a SQL query string and store the query results in a DataFrame.

sql = "SELECT	Key, Etag FROM Objects "
table1 = etl.fromdb(cnxn,sql)

Loading Data

With the query results stored in a DataFrame, you can load your data into any supported Petl destination. The following example loads the data into a CSV file.

etl.tocsv(table1,'output.csv')

Modifying Data

Insert new rows into IBM Cloud Object Storage tables using Petl's appenddb function.

table1 = [['Key','Etag'],['Jon Doe','John']]
etl.appenddb(table1,cnxn,'Objects')

Copyright (c) 2021 CData Software, Inc. - All rights reserved.
Build 20.0.7745