From Petl
The provider can be used to create ETL applications and pipelines for CSV data in Python using Petl.
Install Required Modules
Install the Petl modules using the pip utility.
pip install petl
Connecting
Import the modules, including the CData Python Connector for Oracle Sales. You can then use the provider's connect function to create a connection using a valid Oracle Sales connection string. A SQLAlchemy engine may also be used instead of a direct connection.
import petl as etl import cdata.oraclesalescloud as mod cnxn = mod.connect("HostURL=https://my.host.oraclecloud.com; Username=abc123; Password=abcdef;")
Extract, Transform, and Load the Oracle Sales Data
Create a SQL query string and store the query results in a DataFrame.
sql = "SELECT OptyId, Name FROM Opportunities " table1 = etl.fromdb(cnxn,sql)
Loading Data
With the query results stored in a DataFrame, you can load your data into any supported Petl destination. The following example loads the data into a CSV file.
etl.tocsv(table1,'output.csv')
Modifying Data
Insert new rows into Oracle Sales tables using Petl's appenddb function.
table1 = [['OptyId','Name'],['Commercial Oppty','Residential Oppty']] etl.appenddb(table1,cnxn,'Opportunities')